View Single Post
  #3   Report Post  
Old September 25th 03, 02:10 AM
phil hunt
 
Posts: n/a
Default

On 23 Sep 2003 20:00:32 -0700, Kevin Brooks wrote:

No. Paul is correct, DF'ing a "frequency agile" (or "hopping")
transmitter is no easy task. For example, the standard US SINCGARS
radio changes frequencies about one hundred times per *second*,


Bear in mind that I'm talking about automated electronic gear here,
not manual intervention. Electronics works in time spans a lot
quicker than 10 ms.


So what? Unless you know the frequency hopping plan ahead of time
(something that is rather closely guarded), you can't capture enough
of the transmission to do you any good--they use a rather broad
spectrum.


OK, I now understand that DF generally relies on knowing the
frequency in advance.

BTW, when you say a rather broad spectrum, how broad? And divided
into how many bands, roughly?

Both radios have to be loaded with the same frequency hopping (FH)
plan, and then they have to be synchronized by time. When SINGCARS
first came out the time synch had to be done by having the net control
station (NCS) perform periodic radio checks (each time your radio
"talked" to the NCS, it resynchronized to the NCS time hack); failure
to do this could result in the net "splitting", with some of your
radios on one hack, and the rest on another, meaning the two could not
talk to each other. I believe that the newer versions (known as
SINCGARS EPLRS, for enhanced precision location system) may use GPS
time data, ensuring that everyone is always on the same time scale.


That would make sense.

If two receivers, placed say 10 m aparet, both pick up a signal, how
accurately can the time difference between the repetion of both
signals be calculated? Light moves 30 cm in 1 ns, so if time
differences can be calculated to an accuracy of 0.1 ns, then
direction could be resolved to an accuracy of 3 cm/10 m ~= 3 mrad.


The fact is that the direction finding (DF'ing) of frequency agile
commo equipment is extremely difficult for the best of the world's
intel folks, and darned near impossible for the rest (which is most of
the rest of the world); that is why US radio procedures are a bit more
relaxed than they used to be before the advent of FH, back when we
tried to keep our transmissions to no more than five seconds at a time
with lots of "breaks" in long messages to make DF'ing more difficult.


So transmissions of 5 seconds tend to be hard to DF? Of course, with
the battlefield internet, a text transmission will typically be a
lot less than 5 s (assuming the same bandwidth as for a voice
transmission, i.e. somewhere in the region of 20-60 kbit/s).

transmissions still very clear), and the use of FH combined with
crypto key makes it darned near impossible for the bad guy to decypher
it in any realistic timely manner.


Modern crypto is good enough to withstand all cryptanalytic
attacks.

--
"It's easier to find people online who openly support the KKK than
people who openly support the RIAA" -- comment on Wikipedia