Antenna materials
On Oct 5, 8:16*pm, Art Unwin wrote:
On Oct 5, 2:12*pm, Owen Duffy wrote:
Art Unwin wrote in
Now you can't coat your elements with it but *if you have a solder
bath you can run copper wire thru it. The bismuth is brittle
but with the underlying copper it is stiff enough to stick it on the
antenna elements. I am assuming that the applied current would travel
along the bismuth coating instead of the aluminum and therefore should
increase gain for antennas that use coupling methods such as the Yagi
tho bandwidth may well suffer some what.
What do you think?
I am not sure whether you are considering coating the elements with
solder, tin, or bismuth... but they *all* degrade the RF resistance of an
aluminium element.
Nevertheless, hams are suckers for snake oil salesmen. Just look at the
products sold for antenna wire, open wire feed line and whips... so you
might have an opportunity there Art.
Owen
Hmmmm!
Isn't the idea to get current to flow on the surface
without the skin depth problem? For instance, when you make a Meander
antenna distributed loads are not existent as they cancel out. This
also means that skin depth is non existant as there is no magnetic
field. Thus there is nothing to prevent the current going beyond where
the skin depth is usually situated where it can continue on to flow on
the surface the path of least resistance.
Now the element resistance is of no concern as it is not now part of
the radiation circuit! * Instead of two resistances we only have the
one which pertains to radiation, the sole object of a radiator.
Capacitance and inductance does nothing to advance radiation, tho it
is quite useful to have in other areas of science so why fool with it?
Magnetism and polarization only comes into the picture after
propagation is initiated when particles/electrons are ejected with
helical spin and acceleration which generates various movements,
fields etc after the fact.
Remember, for both transmission and receive the only object that can
break up the parts of electrical and magnetic fields together with
time varying current is the Faraday cage, so it is useful to start
with the cage function to get a true story of radiation. A radiator is
only efficient when you can present a flow path for applied current
where the
source becomes totally resistive.
I threw Bismuth in since it is part and parcel of the superconductor
scenario. grin." Super" has many pleasant conoctations for a salesman
to use.
you see art, they just don't understand how the magical levitating
solar neutrinos will jump from the diamagnetic bismuth much more
efficiently than from aluminum... and they never will understand until
you can explain how my ferromagnetic vertical antennas that obviously
can't support a coating of your magical levitating solar neutrinos
could possibly work at all.
|