Mike Andrews wrote:
Tim Wescott wrote:
Doing it by carrier phase would be better, if you could arrange a phase
reference. With hard-mounted receivers (or with a 2nd transmitter in a
known location) you can broadcast a time reference and do a reverse-GPS
sorta thing.
I thought about the reverse-GPS approach, but couldn't figure out how
to determine absolute position. The most I could come up with was that
you'd know times-of-arrival at the various receivers, and that would
give you deltas from the earliest time-of-arrival. But until you know
the distance of the transmitter from any one of the receivers, you
can't determine position w.r.t. _any_ of them. As soon as you have
distance from one of the receivers and N deltas, you have a fix in
(min(N-1,3)) dimensions -- assuming that the processor knows where all
the receivers (or antennas, at least) is in that space.
So what am I missing?
OK, maybe reverse LORAN. If you know the difference in the times of
arrival between two stations you can plot the hyperbolic surface where
your transmitter must lie. With four stations you should have six
different surfaces. The intersections won't agree, but you can get a
maximum likelihood estimation of the transmitter's position in
three-dimensional space.
Being a mathematician by trade would make this easier, and more fun...
Actually three receivers would do it unambiguously most of the time, but
four would be more accurate at the cost of a bunch more math.
--
Tim Wescott
Wescott Design Services
http://www.wescottdesign.com