Home |
Search |
Today's Posts |
#21
![]() |
|||
|
|||
![]() As for the reality of the situation, answer me this: 1. How much power does your rig transmit? 2. How much power does your rig draw? Correct me if the operation of dividing the first by the second does not reveal an efficiency of roughly 40% and a power loss to heat of roughly greater than that transmitted. Your rig has a massive heat sink with a fan, n'est pas? n'est pas? ? Anyway, the power lost inside the transmitter I thought was due to the inneficiencies of a class A or B amp configuration. That the amplifying device (tube or transistor) is metering out varying amounts of current from a constant DC supply. And the current has to pass thru the tube or transistor before it gets to the load. Assuming a sine wave at RF, zero crossing would be low wasted power, peak also low wasted power, but at 0.707 peak max wasted power (class B). Class C is more efficient except the power in the harmonics you get have to be filtered out, and you get a heated filter. Now if the Thevenin impedance of the transmitter was 50 ohms, then half of the remaining power you successfully converted to RF would heat the transmitter some more. That 40% would become 20%. But if you design the output right, making the Thevenin impedance very low, little RF power is wasted in the transmitter (say 1%) and 39% is pumped out into space (on the air) by a matched antenna. Now that low Thevenin impedance will reflect most of the reflected from the mismatched antenna power back to the antenna. If the transmitter Thevenin impedance was 50 ohms, it would absorb the reflections and get even hotter. Oh, this has its uses, like in a signal coming from a TTL line driver that passes thru a "source termination" resistor of 100 ohms, then thru a 100 ohm impedance transmission line (like carefully designed traces on circuit boards in that GHz computer) and then to a single destination receiving TTL gate. which looks like a high impedance load. The reflected signal gets absorbed by the source termination. A reason for not destination terminations is that this makes the source work harder pumping DC current when the signal is a "high", vs essentially idling when just source terminated. No daisy chaining allowed, the signal looks like crap except at the very end. |
#22
![]() |
|||
|
|||
![]()
On Thu, 25 Dec 2003 05:47:12 GMT, Robert Casey
wrote: As for the reality of the situation, answer me this: 1. How much power does your rig transmit? 2. How much power does your rig draw? Correct me if the operation of dividing the first by the second does not reveal an efficiency of roughly 40% and a power loss to heat of roughly greater than that transmitted. Your rig has a massive heat sink with a fan, n'est pas? n'est pas? ? Anyway, the power lost inside the transmitter I thought was due to the inneficiencies of a class A or B amp configuration. Hi Robert, Given you offer no evidence to the contrary, 40% efficiency seems to be the confirmed rule. Giving it a name does nothing to reduce it or enhance it, the calories expended rob us of RF output for the power draw to generate that output. That power loss is confirmed through everyone's experience as heat. Heat sinks and fans testify to our acceptance of its loss. The ONLY advance we can claim in the last half century, is that no power is lost to lighting up filaments in transistors. That the amplifying device (tube or transistor) is metering out varying amounts of current from a constant DC supply. And the current has to pass thru the tube or transistor before it gets to the load. All of this goes without saying and changes nothing about efficiency, or Thevenin issues that isn't already obvious. If it illustrates anything is that it CONFIRMS the Thevenin mechanism (once you look under the hood, an argument no-no if you first posit the Thevenin argument). Assuming a sine wave at RF, zero crossing would be low wasted power, peak also low wasted power, but at 0.707 peak max wasted power (class B). What makes the angle an indicator of waste? The RF wave consists of 360 degrees of variation all of which is propagated. If you have your head under the hood, playing with the innards of the source, there is still nothing inherently lossy about the angle of conduction. It is correlatable to the magnitude of voltage across a source (the tube/transistor, not the load), or current through the source (same provisos), but in that respect the least loss occurs at the EXTREME of the cycle that draws down the voltage differential against the supply or the current magnitude; certainly not at the zero cross (there is no such thing at the plate or collector of a powered amplifier) and even more remotely the 0.707. Again, such discussion simply focuses on the Thevenin validation for the source Z specification. Class C is more efficient except the power in the harmonics you get have to be filtered out, and you get a heated filter. Your logic, as faulty as the presentation may be, simply validates the Thevenin specification for the Source Z. You exhibit any number of calorie sinks to satisfy some aspect of the Real R, but I see by the flawed argument below that you persist in Edison's folly of forcing an R only into the Z specification of Thevenin. However, we will next proceed to illustrate that Edison's folly is in fact demonstrably valid for the present discussion. :-) Now if the Thevenin impedance of the transmitter was 50 ohms, then half of the remaining power you successfully converted to RF would heat the transmitter some more. With a 40% efficiency, that has been demonstrated without further analysis. That 40% would become 20%. This is ENRON math. But if you design the output right, making the Thevenin impedance very low, little RF power is wasted in the transmitter (say 1%) and 39% is pumped out into space (on the air) by a matched antenna. "IF?" Are we to assume that every transmitter that has come down the pike has never been designed correctly nor optimized? Forcing such an argument without showing how to accomplish it presumes you have a method that transcends all of the current generation of Engineers capacity to bring it to the market. The force of Capitalism and the Profit Motive most sincerely invalidates that concept in a heartbeat. What about the remaining 61%? You have in fact lowered the emitted power in comparison to the drawn power in your argument above. How this goes to prove that Thevenin's source is Resistorless is an argument of the man standing behind the curtains. Now that low Thevenin impedance will reflect most of the reflected from the mismatched antenna power back to the antenna. And how does the low source Z face the prospect of the High load Z reflecting the power in turn? Thevenin explains the absurdity of this forced expectation, but you do not. Your argument contains the usual blindside, to be described below. If the transmitter Thevenin impedance was 50 ohms, it would absorb the reflections and get even hotter. It does get hot, that is demonstrably true to everyone's experience. That heat has its genesis in the Thevenin model and confirms it. Oh, this has its uses, like in a signal coming from a TTL line driver that passes thru a "source termination" resistor of 100 ohms, then thru a 100 ohm impedance transmission line (like carefully designed traces on circuit boards in that GHz computer) and then to a single destination receiving TTL gate. which looks like a high impedance load. The reflected signal gets absorbed by the source termination. A reason for not destination terminations is that this makes the source work harder pumping DC current when the signal is a "high", vs essentially idling when just source terminated. No daisy chaining allowed, the signal looks like crap except at the very end. Your final elaborations above, again, go to the proof of Thevenin, how you expect it to be otherwise has not been demonstrated. Eventually, these arguments devolve to the myopic observation that there is no "smoking gun" to be exhibited in the form of a carbon composition resistor that embodies the forced R argument of Thevenin. Such posters un/willingly ignore the obvious location found within the Emitter-Collector junction. When my push comes to shove, like right now, they generally scrabble around the spec sheets (giving every evidence of having never built from one) to point out that their transistor exhibits 2 to 3 Ohms NOT 50! They thump their thin chest with pride and then proclaim vindication. Again the myopic arguments collapse in turn when it is pointed out that the Transistor's Emitter-Collector junction is not the Source Z, but rather the abstracted or untransformed value that has yet to be observed (hence the failure of their myopic testimony). If you are going to look under the hood, you have to look at everything under the hood. For EVERY finals deck supporting the usual tandem transistor output, they ALL drive a transformer exhibiting a 1:3 winding ratio. The canonical instruction of Z transformation reveals that this same series combination of Emitter-Collector Z presented through the transformer finds at that output their abstract Source Z transformed to, guess what?, roughly 50 Ohms. However, that is not ALL of the components under the hood to be examined. We also have in EVERY finals deck, an output low pass filter with a characteristic Z of, guess what?, roughly 50 Ohms. Hence, in the deep interior where we abstract the Thevenin model to the circuit level, the equivalent R that is demanded, is found in the several Ohms described above. THAT abstracted Thevenin Source sees the 50 Ohm Load transformed DOWN to its expected value (the usual, and expected reverse operation of transformers built with 3:1 ratios, from the perspective of the load). Most posters argue from their blind side of wholly ignoring the MATCHing operation of the finals' transformer to force their low R argument (which is a corruption of Thevenin's stated Z). Thus, there is a chain of transformation from the Emitter-Collector junction through many levels to finally meet a load that exhibits the confirmation of Thevenin that is consistent with the evidence of heat dissipated by the physical source. If that load presents a mismatch, the power returned is delivered to a MATCHED load: what was formerly the Source. The Source, by design, reflects NOTHING. When the Source is presented with a mismatched Load we either perform additional matching operations (a Tuner) or accept the additional heat burden the mismatch forces upon the Source. This can be in the form of a long term temperature rise (current phase is additive) or the sudden spark (heat, n'est pas?) of voltage breakdown (voltage phase is additive). Contrary to the lore of Transistors being low voltage devices, failure is found far more frequently in the current density at the, guess what?, Emitter-Collector junction. The catastrophic results testify, again, to the validity of the Thevenin model. As I have repaired more than my share of Electronic equipment, professional experience has shown the majority of transistor failures reveal themselves as shorts due to their inability to shed the heat of that current density (a melt down - calories - heat - R). The compelling, and obvious proof of this last is found in very few operators deliberately driving massive mismatches to anything less than equipment failure as a consequence. Of course, when that occurs, it validates the reflective mode of the Source for as many cycles of RF stored in the transmission line returning from the mismatched load; being generous, say roughly several microseconds? 73's Richard Clark, KB7QHC |
#23
![]() |
|||
|
|||
![]()
Richard sed,
no power is lost to lighting up filaments in transistors. ======================= Wrong ! Transistors don't have filaments. |
#24
![]() |
|||
|
|||
![]() "Reg Edwards" wrote in message ... Richard sed, no power is lost to lighting up filaments in transistors. ======================= Wrong ! Transistors don't have filaments. Are some people so ready to jump on comments they see that they fail to see the comment being jumped on was made tongue-in-cheek??? OF COURSE the guy that said "no power is lost to lighting up filaments in transistors" knew there are no filaments in transistors. Sheesh. I can't believe the number of people here just waiting to try and demonstrate how brilliant they are here by jumping on such comments where the intent should have been obvious to everyone. Jerry -- Jerry Bransford To email, remove 'me' from my email address KC6TAY, PP-ASEL See the Geezer Jeep at http://members.cox.net/jerrypb/ |
#25
![]() |
|||
|
|||
![]()
Richard Clark wrote:
On Thu, 25 Dec 2003 05:47:12 GMT, Robert Casey wrote: As for the reality of the situation, answer me this: 1. How much power does your rig transmit? 2. How much power does your rig draw? Correct me if the operation of dividing the first by the second does not reveal an efficiency of roughly 40% and a power loss to heat of roughly greater than that transmitted. Your rig has a massive heat sink with a fan, n'est pas? n'est pas? ? Anyway, the power lost inside the transmitter I thought was due to the inneficiencies of a class A or B amp configuration. Hi Robert, Given you offer no evidence to the contrary, 40% efficiency seems to be the confirmed rule. Giving it a name does nothing to reduce it or enhance it, the calories expended rob us of RF output for the power draw to generate that output. That power loss is confirmed through everyone's experience as heat. Heat sinks and fans testify to our acceptance of its loss. Let's ignore, for the moment, the losses involved in the conversion of DC power to RF power. Now lets say we have 100 watts of RF. If the antenna is a perfect load (50 ohms resistive) and if the Thevenin impedance of the transmitter is 50 ohms, then yes, you got 50 watts of extra heat in the transmitter. Now if the transmiter has a very low Thevenin impedance, then more power is delivered to the antenna and less waste in the transmitter. I'm not trying to do the "transfer the max power to the load and I don't care how much waste in the source" Thevenin thing we had in EE101. If I did that, and the amp is up to it, I could transmit even more power to the antenna, but I'd waste more in the source. In any event Merry Xmas. |
#26
![]() |
|||
|
|||
![]() "Reg Edwards" wrote in message ... Richard sed, no power is lost to lighting up filaments in transistors. ======================= Wrong ! Transistors don't have filaments. but they are full of smoke, let out the smoke and they don't work any more. WAKE UP reg, read his statement again and don't be so fast to jump on some one. |
#27
![]() |
|||
|
|||
![]() "Jerry Bransford" wrote in message news:8bGGb.27604$gN.16638@fed1read05... "Reg Edwards" wrote in message ... Richard sed, no power is lost to lighting up filaments in transistors. ======================= Wrong ! Transistors don't have filaments. Are some people so ready to jump on comments they see that they fail to see the comment being jumped on was made tongue-in-cheek??? OF COURSE the guy that said "no power is lost to lighting up filaments in transistors" knew there are no filaments in transistors. Sheesh. I can't believe the number of people here just waiting to try and demonstrate how brilliant they are here by jumping on such comments where the intent should have been obvious to everyone. Jerry -- Jerry Bransford Wellsir, I remember doing that in High School a couple of times and demonstrating just the opposite. I'm actually fairly bright but sometimes I'm not as bright as I thoughtI was at a particular moment. Harold Burton KD5SAK |
#28
![]() |
|||
|
|||
![]()
On Thu, 25 Dec 2003 19:18:17 GMT, Robert Casey
wrote: Let's ignore, for the moment, the losses involved in the conversion of DC power to RF power. Let's ignore the R resistor, and then we can prove it doesn't exist? :-) Now lets say we have 100 watts of RF. If the antenna is a perfect load (50 ohms resistive) and if the Thevenin impedance of the transmitter is 50 ohms, then yes, you got 50 watts of extra heat in the transmitter. See? Your logic failed at the gate. You ALREADY have 100W RF as a premise. :-) How did you arrive at 100W without its measure AT the Load? To force the speculation that the internal resistance (neglected but evident by such logic) drops it? You are separating those things that are inseparable and this is the common fault of all speculations that look beneath the hood of the Thevenin Model. Now if the transmiter has a very low Thevenin impedance, then more power is delivered to the antenna and less waste in the transmitter. I'm not trying to do the "transfer the max power to the load and I don't care how much waste in the source" This is another forced argument. No where, until now, was it offered that maximum power was being delivered or even demanded. We are simply observing what IS. With the efficiency sitting at 40% it is painfully obvious from the beginning that the road of maximum transfer has not been tread upon - EVER. Thevenin thing we had in EE101. If I did that, and the amp is up to it, I could transmit even more power to the antenna, but I'd waste more in the source. Brush up on your EE101 to discover that the Thevenin Model is derived from observables. I have already described ALL observables that are consistent with opening the model to look under the hood. There have been many writers here, over the years, who have offered bench tests that prove this by observation. As of yet, none has been toppled with work equal in quality (i.e. demonstration or measurement). It is no more simple that plunking the load into a bucket of water, plunking the transmitter into a bucket of water, hitting the transmit switch and measuring temperature. The transmitter will release more heat than the load. To save yourself the issue of submerging the source, common practice (as described by Thevenin) would have you measure the voltage across the source, and the current into it. Yields identical results. I've employed the HP Caloric Wattmeter for years at the Metrologist's bench to faithfully validate this concept over and over. In any event Merry Xmas. Season's Greetings Richard Clark, KB7QHC |
#29
![]() |
|||
|
|||
![]()
Richard Clark wrote:
SNIP The ONLY advance we can claim in the last half century, is that no power is lost to lighting up filaments in transistors. Oh Boy!! 50 years of hamming, 43 years of engineering, 40 years of marriage, 15 years of ministry, and 3+ years of retirement and NOW I FINALLY FIND OUT WHY TRANSISTOR DON'T LIGHT UP!!! I better hold on to my 3-500 Amplifier so I can demonstrated a ham station to the neighborhood kids ... lots of light! |
#30
![]() |
|||
|
|||
![]()
"Dave Shrader" wrote in message
news:fTZGb.45760$VB2.83730@attbi_s51... Richard Clark wrote: SNIP The ONLY advance we can claim in the last half century, is that no power is lost to lighting up filaments in transistors. Oh Boy!! 50 years of hamming, 43 years of engineering, 40 years of marriage, 15 years of ministry, and 3+ years of retirement and NOW I FINALLY FIND OUT WHY TRANSISTOR DON'T LIGHT UP!!! I better hold on to my 3-500 Amplifier so I can demonstrated a ham station to the neighborhood kids ... lots of light! I'm dating myself but I miss filaments/vacuum tubes and the wonderful smells/aromas of the hamshacks I used to visit as a kid in the sixties before I got my ham license. Luckily I got to work with enough big vacuum tube tx/rx equipment in the USAF to know how much better what we have now really is. I bought my childhood dream receiver a few years ago, a Hammarlund HQ-180, and it brought back some great memories at mediocre performance. ![]() 73 Jerry -- Jerry Bransford To email, remove 'me' from my email address KC6TAY, PP-ASEL See the Geezer Jeep at http://members.cox.net/jerrypb/ |
Reply |
Thread Tools | Search this Thread |
Display Modes | |
|
|