Home |
Search |
Today's Posts |
#1
![]() |
|||
|
|||
![]()
I am going to put up a horizontal loop @ about 60' in hopes of having a
decent 160-10 antenna. Is there any adavntage to increasing the the total length from 1 wavelength at the lowest freq. (about 530') to 2 wavelengths(1,060'). i have the space & the wire & I'm wondering if it's worth the extra effort. Also, am I better off with a 3/8 WL inverted L on 160. |
#2
![]() |
|||
|
|||
![]() "T.E.O", If you have the room, by all means put up the larger loop. How will it compare to a 3/8w inverted "L"? Beats me, never had an inverted "L". 'Doc |
#3
![]() |
|||
|
|||
![]()
You loose something and you gain something else. The longer loop (320m) will
give you a lower elevation angle at the low frequencies (160, 80 m...), but the beam pattern on 20m - 10 meter will suffer. Look at W4RNL's analysis http://www.cebik.com/atl1.html. Even a 160m loop is inferior to an 80m loop on 10 meters. Remember to scale his figures, as the 320m loop will have this problem already on 20 meters. (An 80m loop is my main antenna) Sverre LA3ZA www.qsl.net/la3za I am going to put up a horizontal loop @ about 60' in hopes of having a decent 160-10 antenna. Is there any adavntage to increasing the the total length from 1 wavelength at the lowest freq. (about 530') to 2 wavelengths(1,060'). i |
#4
![]() |
|||
|
|||
![]()
On Fri, 17 Oct 2003 00:15:19 GMT, "T.E.O"
wrote: I am going to put up a horizontal loop @ about 60' in hopes of having a decent 160-10 antenna. Is there any adavntage to increasing the the total length from 1 wavelength at the lowest freq. (about 530') to 2 wavelengths(1,060'). i have the space & the wire & I'm wondering if it's worth the extra effort. Also, am I better off with a 3/8 WL inverted L on 160. As someone has already pointed out you will not see great results on 20-- through ten, unless the major lobes happen to land where you want to talk most offten.. I've use a 160M (530') Loop here with very good results for about 5 years now. But I would suggest puting up some form of vertical also.. to help fill in those nulls in the pattern.. with my loop and a vertical i've been able to work just about everything I want.. as for the 3/8 wav inverted L-- it is a good antenna but you would like the loop better.. 73 Dave Kc1di |
#5
![]() |
|||
|
|||
![]() Sverre Holm wrote: You loose something and you gain something else. The longer loop (320m) will give you a lower elevation angle at the low frequencies (160, 80 m...) I did not see this in L.B.'s article ( in a quick read through) and it would seem to go against the basic premise that takeoff angle is solely a function of height above ground. I did a loop model in AO and did not see any changes in takeoff angle as I changed loop circumference. Can you point me to the section. Tnx, Dale W4OP |
#6
![]() |
|||
|
|||
![]()
I did not see this in L.B.'s article ( in a quick read through) and it
would seem to go against the basic premise that takeoff angle is solely a function of height above ground. I did a loop model in AO and did not see any changes in takeoff angle as I changed loop circumference. Can you point me to the section. Look at the first three figures with elevation plots for an 80m loop at 3.5, 7 and 14 MHz and see how the elevation angle falls with frequency (as well as with height). This performance is scalable, so consider these 3 figures as a loop of size one, two and four wavelengths. Then 80m/3.5 is the same as a 160m loop at 1.8 MHz, and 80m/7 MHz is the same as a 2*160m loop at 1.8 MHz and so on. From this follows the results that a loop is a cloud warmer (NVIS) at 1 wavelength and becomes a better and better DX antenna as frequency increases. But only up to a point, as a 160m loop at 28 MHz does not fully develop its main lobes and loses gain compared to a 80m loop at 28 MHz, the same with a 2*160m loop at 14 MHz and so on. Sverre LA3ZA |
#7
![]() |
|||
|
|||
![]() Sverre Holm wrote: I did not see this in L.B.'s article ( in a quick read through) and it would seem to go against the basic premise that takeoff angle is solely a function of height above ground. I did a loop model in AO and did not see any changes in takeoff angle as I changed loop circumference. Can you point me to the section. Look at the first three figures with elevation plots for an 80m loop at 3.5, 7 and 14 MHz and see how the elevation angle falls with frequency (as well as with height). This performance is scalable, so consider these 3 figures as a loop of size one, two and four wavelengths. Then 80m/3.5 is the same as a 160m loop at 1.8 MHz, and 80m/7 MHz is the same as a 2*160m loop at 1.8 MHz and so on. From this follows the results that a loop is a cloud warmer (NVIS) at 1 wavelength and becomes a better and better DX antenna as frequency increases. But only up to a point, as a 160m loop at 28 MHz does not fully develop its main lobes and loses gain compared to a 80m loop at 28 MHz, the same with a 2*160m loop at 14 MHz and so on. Sverre LA3ZA What you are not accounting for is the fact that all 3 plots are taken at 3 different heights in FEET. So the plots showing a 3.5 MHz loop at say 70' is about 1/4 wavelength high, but that same loop at 14 mHz is a full wavelength up- this accounts for the lower takeoff angle, not the increased length of the loop. Modeling supports this. Dale W4OP |
#8
![]() |
|||
|
|||
![]()
What you are not accounting for is the fact that all 3 plots are taken at
3 different heights in FEET. So the plots showing a 3.5 MHz loop at say 70' is about 1/4 wavelength high, but that same loop at 14 mHz is a full wavelength up- this accounts for the lower takeoff angle, not the increased length of the loop. Good point, height has to be taken into account, except at 160 meters, since a full wavelength loop has a 90 deg. take-off angle (cloudwarmer) independent of height. A 2 wavelength loop will have a lower take-off angle regardless of height (the higher, the lower angle). At medium frequencies, it is the height relative to wavelength which is the dominant factor as you point out. Scaling of the examples in http://www.cebik.com/atl1.html shows this also: - 80m loop @ 7 MHz and height 75' = 22.9 m = 0.57 wavelengths: elevation peak at 26 degrees - 80m loop @ 14 MHz and height 35' = 10.7 m = 0.54 wavelengths: elevation peak at 26 degrees Same take-off angle, at approximately the same relative height. At high frequencies, the following statements from Cebik concerning the 80 m loop relative the 160 m loop can still be extrapolated to 160m vs. 320 m loop, I would say: "One might well argue for some installations that the benefits derived on 80 meters from the larger loop are offset by the disadvantages on some of the higher bands." "There is a strong possibility that, if your interests are in upper HF operations, the large 160-meter loop will prove to be a disappointment. Its true virtue lies in the lower HF region, especially on 80 meters, with reasonable good performance through 20 meters." "Although the 80-meter loop shows poor performance on 80 meters for every application other than NVIS, the smaller loop has distinct advantages over the larger loop on almost every other band." Sverre, LA3ZA |
#9
![]() |
|||
|
|||
![]()
Can someone please explain to me why a lower takeoff angle is better?
Roy Lewallen, W7EL Dale Parfitt wrote: Sverre Holm wrote: You loose something and you gain something else. The longer loop (320m) will give you a lower elevation angle at the low frequencies (160, 80 m...) I did not see this in L.B.'s article ( in a quick read through) and it would seem to go against the basic premise that takeoff angle is solely a function of height above ground. I did a loop model in AO and did not see any changes in takeoff angle as I changed loop circumference. Can you point me to the section. Tnx, Dale W4OP |
#10
![]() |
|||
|
|||
![]()
Roy Lewallen wrote:
Can someone please explain to me why a lower takeoff angle is better? Quoting from an old ARRL Antenna Book: "Rays entering the ionized region at angles above the critical angle are not bent enough to be returned to Earth, and are lost in space." "A significant loss of signal occurs with each hop. ... Assuming that both waves do reach the same point, the (one-hop) low-angle wave will contain more energy" (than the two-hop higher angle wave). -- 73, Cecil, W5DXP |